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Abstract—We consider peer-to-peer (P2P) networks, where
multiple peers are interested in sharing multimedia content. In
such P2P networks, the shared resources are the peers’ con-
tributed content and their upload bandwidth. While sharing
resources, autonomous and self-interested peers need to make
decisions on the amount of their resource reciprocation (i.e.,
representing their actions) such that their individual utilities
are maximized. We model the resource reciprocation among the
peers as a stochastic game and show how the peers can determine
optimal strategies for resource reciprocation using a Markov
Decision Process (MDP) framework. Unlike existing resource
reciprocation strategies, which focus on myopic decisions of peers,
the optimal strategies determined based on MDP enable the
peers to make foresighted decisions about resource reciprocation,
such that they can explicitly consider both their immediate as
well as future expected utilities. To successfully formulate the
MDP framework, we propose a novel algorithm that identifies
the state transition probabilities using representative resource
reciprocation models of peers. These models express the peers’
different attitudes toward resource reciprocation. We analytically
investigate how the error between the true and estimated state
transition probability impacts each peer’s decisions for selecting
its actions as well as the resulting utilities. Moreover, we also ana-
lytically study how bounded rationality (e.g., limited memory for
reciprocation history and the limited number of state descriptions)
can impact the interactions among the peers and the resulting
resource reciprocation. Simulation results show that the proposed
approach based on reciprocation models can effectively cope
with a dynamically changing environment such as peers’ joining
or leaving P2P networks. Moreover, we show that the proposed
foresighted decisions lead to the best performance in terms of the
cumulative expected utilities.

Index Terms—Bounded rationality, foresighted decision,
Markov decision process, peer-to-peer (P2P) network, resource
reciprocation game.

1. INTRODUCTION

eer-to-peer (P2P) applications (e.g., [1]-[3]) have re-
P cently become increasingly popular and represent a large
majority of the traffic currently transmitted over the Internet.
One of the unique aspects of P2P networks stems from their
flexible and distributed nature, in which each peer can act as
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both server and client [4]. Hence, P2P networks provide a cost
effective and easily deployable framework for disseminating
large files without relying on a centralized infrastructure [5].
Due to these characteristics, it has been recently proposed to
use P2P networks for general file sharing [2], [3], [6], [7] as
well as multimedia streaming [5], [8]-[10]. Moreover, several
media streaming systems have been successfully developed for
P2P networks using different approaches such as tree-based
or data-driven approaches (e.g., [11], [12]). In this paper, we
focus on data-driven P2P systems such as CoolStreaming [8]
and Chainsaw [9] for multimedia streaming, or BitTorrent
systems [6], [7] for general file sharing, which adopt pull-based
techniques [8], [9]. In these systems, data (i.e., multimedia
stream or general files) are divided into chunks of uniform
length, which are distributed over the P2P network. Each peer
possesses several chunks which are shared among interested!
peers. Information about the availability of the chunks is also
periodically exchanged among the associated peers. Using
this information, peers continuously associate themselves with
other peers and exchange their chunks. While this approach has
been successfully deployed in real-time multimedia streaming
and file distributions over P2P networks, key challenges such
as determining optimal resource reciprocation among self-in-
terested peers still remain largely unaddressed. Specifically,
pull-based techniques assume that the peers in the P2P network
are altruistic and they provide their available chunks whenever
requested. However, such a reciprocation strategy is undesirable
from the perspective of a self-interested peer, who is aiming at
maximizing its utility.

The resource reciprocation strategy deployed in BitTorrent
is based on the equal upload bandwidth distribution. A peer
in BitTorrent systems thus equally divides its available up-
load bandwidth among multiple leechers [6], [7]. However,
for heterogeneous content and diverse peers (with different
upload/download requirement), such reciprocation strategies
are not optimal. The resource reciprocation in [8] is based on
a heuristic scheduling algorithm, which enables the peers to
determine the suppliers of required chunks and select the peer
with the highest bandwidth. Alternatively, the resource recipro-
cation can be based on the random chunk selection algorithm as
in [9]. As discussed, the solutions in [8] or [9] are implemented
assuming that the associated peers are altruistic, such that they
provide the chunks and bandwidth whenever requested. Hence,
the resource reciprocation methods in these solutions do not

In [6], [7], it is said that peer A is interested in peer B when B has chunks of
the content that A would like to possess.
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consider the strategic interactions of the heterogeneous and
self-interested peers.

To take into account the interactions of heterogeneous
and self-interested peers in P2P networks, game theoretic
approaches have been proposed. In [13], a micropayment
mechanism is used to model the rational peers’ interactions,
and the resulting equilibria emerging when different payment
mechanisms are imposed. In general, a key assumption is that
peers will follow the prescribed P2P protocols. It has been
found, however, that self-interested peers will deviate from the
prescribed protocols or free-ride unless preemptive solutions
exist in the network. For example, in [14], mechanism design
solutions are proposed in order to compel the peers to adhere
to their reciprocation promises. In [15], an incentive scheme
for compelling peers to contribute resources is proposed,
which provides differential services based on the peer’s past
contributions. The interactions for different types of peers
(e.g., homogeneous or heterogeneous) are analyzed using the
notion of Nash equilibrium. In the above approaches, however,
the peers determine their decisions (i.e., actions) to maximize
their utilities myopically, without explicitly considering the
future impact of the actions on their long-term utilities. In
[16], the repeated interactions among peers are modeled as
an evolutionary instantiation of the Prisoner’s Dilemma and
the Generalized Prisoner’s Dilemma, and incentive techniques
are proposed for peers in order to compel them to contribute
their resources. However, this research only considers the case
where peers have a limited set of simple actions, i.e., allowing
download or ignoring download requests, but does not address
how to divide each peer’s available resources. Hence, they do
not provide solutions for maximizing the foresighted utilities
of peers, which is essential in P2P systems, where peers have
long-term interactions.

To address these challenges, in this paper, we model the re-
source reciprocation among the interested peers as a stochastic
game [17], where peers determine their resource distributions
by explicitly considering the probabilistic behaviors (reciproca-
tion) of their associated peers. Unlike existing resource recip-
rocation strategies, which focus on myopic decisions, we for-
malize the resource reciprocation game as a Markov Decision
Process (MDP) [18] to enable peers to make foresighted deci-
sions on their resource distribution in a way that maximizes their
cumulative utilities, i.e., their immediate as well as future utili-
ties.

To successfully formulate the resource reciprocation game
as an MDP problem, the peers need to identify the associated
peers’ probabilistic behaviors for resource reciprocation. The
probabilistic behaviors of the associated peers can be estimated
using the past history of resource reciprocation and are repre-
sented by state transition probabilities in the MDP framework.
In this paper, the state of a peer is defined as the set of received
resources from each of the associated peers. Hence, the actions
of the associated peers determine a peer’s state. We propose a
novel algorithm that can efficiently identify the state transition
probabilities using peers’ reciprocation models. The reciproca-
tion models of the peers are motivated by [19], which classify
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TABLE I
SUMMARY OF NOTATIONS

Notation | Description
C group of peer 7 (with N¢, associated peers)
Si state of peer i, s; = (Si1,..., SiNg, )
S; state space of peer 2
a; action of peer i, a; = (a1, ... ’aiNCi)
A; action space of peer ¢ '
i state mapping function of peer ¢
R;i(s4) reward of peer i in s;
Tik allocated resources to peer k from peer %
Nik number of state descriptions
Pa,(s;,s;) | state transition probability from s; to s given a;
e reciprocation policy of peer ¢
L; available maximum upload bandwidth of peer ¢
A9 degree of optimism of peer i to peer k
A?f, degree of pessimism of peer % to peer k
Mﬁ(sik) a reciprocation matrix of peer 7 in s;j,
Dy, distance metric (see Proposition 4)

the rational attitudes of players in a game towards their strate-
gies as optimistic, pessimistic, and neutral archetypes. We con-
struct reciprocation matrices to capture the reciprocation behav-
iors of peers. Then, the state transition probabilities are identi-
fied by linear combinations of weighted reciprocation matrices.
Note that the decisions made by peers based on the estimated
state transition probabilities can lead to different resource recip-
rocation strategies than those based on the true state transition
probabilities, thereby possibly deviating from the actual derived
utility. This impact on the accuracy of the estimated utility is an-
alytically quantified.

Unlike the implicit assumptions on players’ rationality in
conventional game theory, where players have the abilities to
collect and process relevant information, and select alternative
actions among all possible actions [20], [19], we consider
the bounded rationality [20] of peers. This is because per-
fectly rational decisions are often infeasible in practice due to
memory and computational constraints. To illustrate the effects
of bounded rationality, we consider cases where the peers have
limited memory for storing the resource reciprocation history,
and have a limited number of states based on which they make
their decisions. We also quantify the impact of the bounded
rationality on the peers’ interactions and their utilities.

This paper is organized as follows. In Section II, we model
the resource reciprocation among peers as a resource reciproca-
tion game. In Section III, the types of peers in the considered
P2P networks are discussed. They are classified based on their
objectives in terms of utilities and their resource reciprocation
attitudes. In Section IV, we analytically investigate the interac-
tions among different types of peers with different constraints.
In Section V, an algorithm that determines the state transition
probabilities based on the reciprocation models is proposed. We
analytically quantify the impact of this approach on the derived
utility. Simulation results are provided in Section VI and con-
clusions are drawn in Section VII. For reader’s convenience,
we summarize several notations frequently used in this paper
in Table I.
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Fig. 1. Group update process and related processes.

II. A NEW FRAMEWORK FOR RESOURCE RECIPROCATION

In P2P networks, peers would like to associate themselves
with other peers that possess multimedia content in which they
are interested. When peers agree to share content with each
other, they negotiate the amount of resources which they will
provide to each other. We model the resource reciprocation
among the peers as a resource reciprocation game. We begin
with a motivating example describing why the foresighted
decisions on the actions are important and how they can be
beneficial to peers.

A. A Simple Motivating Example for Myopic and Foresighted
Reciprocation

In this illustrative example, we consider a simple resource re-
ciprocation game, where two self-interested peers interact with
each other to negotiate what resources they will provide to each
other. In this example, the peers’ actions are the divisions of
their available resources (e.g., percentage of available upload
bandwidth) among their associated peers, and the states of the
peers are determined based on their received resources. Hence,
one peer’s action can determine the other peer’s state and re-
ward?. We assume that the resource reciprocation behaviors are
perfectly known by both peers. Thus, both peers know the prob-
abilities with which the other peer takes a certain action given
their own actions. In this illustrative example, we assume that
the available actions of peer 1 and peer 2 are A; = {al,,a?,}
and Ay = {a;, a3, }, respectively. Suppose that peer 1 and peer
2 currently take their actions al, and a3;, and hence, their cur-
rent state is given by s = (s1,52) = (ad;, al,). For example,
peer 1 in state s; can take action a},, while expecting that peer
2 will take action a3; with probability Pr(al;|al,,s;) and ac-
tion a3, with probability Pr(a3,|al,,s;). Hence, the expected
reward R(ai,, s1) for peer 1 that takes ai, in state s; becomes

R (a%27 81) = a%l Pr (a%1|a%27 Sl)

+a3, Pr (a3, ajy, 51) . (D)

Similarly, the expected reward R(a?,, s1) for peer 1 that takes
a?, in state s; can be expressed as R(a3,, s1). Therefore, peer
1 makes decision on its action a7,, such that it maximizes its
expected reward from state sy, i.e.,

j* = arg max {R(a{z, 51)} : @
je{1,2}

2The reward can be defined as the total received resources or the resulting
utilities. More detailed definition of the reward in this paper will be discussed
in Section II-B.
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Fig. 2. Illustrative example for a resource reciprocation in C; with four associ-
ated peers at t. The resource reciprocation at ¢ is denoted by (agf‘). 35“) in this
example.

Note that the decision of peer 1 given in (2) can be interpreted
as myopic since it does not consider the future rewards by taking
action aj12 in state s1, but rather it focuses only on maximizing
its immediate expected reward. Hence, this decision may not be
optimal if the future rewards are considered.

Let us now consider the foresighted decisions of the peers
on their actions, which can maximize the cumulative rewards
including the immediate expected reward and the future (dis-
counted) expected rewards. In this illustration, we assume that
the peers make foresighted decisions considering the one step
future reward. Hence, a foresighted peer 1 needs to consider the
future reward R(a¥,, s}) that can be derived in a next state s/
with the corresponding optimal action a’f; € A;. Therefore,
peer 1 in state s; determines its action considering the cumula-
tive discounted expected reward, i.e.,

j* =argmax{ R (a{2731)
je{1,2}

+’yZR(aIf;7s'1) Pr (33|a{2731) 3)

1

where «y is a constant referred to as the discount factor and k*
is determined by k* = arg maxyc (1 23 {R(af,, s7)}. Note that
the decisions in (2) are a subset of the decision in (3) (i.e., (3)
is identical to (2) if v = 0). Hence, if the decisions based on
(2) and (3) are different, it can be inferred that an optimal action
that maximizes the immediate expected reward cannot be the
optimal action that maximizes the cumulative rewards.

Summarizing, as shown in the above example, peers need to
take foresighted decisions when engaging in resource recipro-
cation games.

B. Resource Reciprocation Games in P2P Networks

Resource reciprocation games in P2P networks are played
by the peers interested in each other’s multimedia content.
A resource reciprocation game is played in a group, where
a group consists of a peer and its associated peers. A group
can be swarms in [6], [7], partnerships in [8], or neighbors in
[9]. We denote the associated group members of a peer ¢ by
C;. Note that C; does not include peer 7 but represents the
associated peers with peer i. The peers in C; are indexed by
1,...,Ng,,ie,C; ={1,..., Ng, }. For a peer k in group C;,

’ ’
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Fig. 3. Resource reciprocation game played by peer : based on the MDP. (a) Determining optimal policy (b) Determining optimal actions.

peer k also has its own group C}, which includes peer ¢. Due to
the dynamics introduced by peers joining, leaving, or switching
P2P networks, information about groups needs to be regularly
(periodically) updated or it needs to be updated when group
members change [6], [7]. This is shown in Fig. 1.

The resource reciprocation game in a group C; is a stochastic
game [17], which consists of

* a finite set of players (i.e., peers): C; U {i};

o foreach peer [ € C; U {i}, a nonempty set of actions: Ay;

 foreachpeer! € C;U{i}, apreference relation (i.e., utility

function) of peer | : Uj(-).
To play the resource reciprocation game, a peer can deploy an
MDP, as discussed as follows.

For a peer ¢, an MDP is a tuple < S;, A;, P;, R; >, where S;
is the state space, A; is the action space, P; : S; X A; x S; —
[0, 1] is a state transition probability function that maps the state
s; € S; at time ¢, corresponding action a; € A; and the next
state s, € S; at time ¢ + 1 to a real number between 0 and 1,
and R; : S; — R is areward function, where R;(s;) is a reward
derived in state s; € S;. The details are explained as follows.

1) State Space S;: A state of peer 7 represents the set of
received resources from the peers in C;, expressed as

{(:1?17;,... OSZEkiSLk,VkEC,‘,} 4)

where z; denotes the provided resources (i.e., rate) by peer k
in C; and Ly, represents the available maximum upload band-
width of peer k3. The total received rates of peer ¢ in C; is thus
> rec, Tki- Due to the continuity of x;, the cardinality of the
set deﬁned in (4) can be infinite. Hence, we assume that peer %
has a function 1);, for peer k, which maps the received resource
Zk; into one of n;, discrete values4, i.e., Vip(Tri) = Sir €
{sk,...,sii*}. These values are referred to as state descrip-
tions in this paper. Hence, the state space can be considered to
be finite. The number of state descriptions will impact its perfor-
mance and this will be discussed in Section IV. The state space
of peer ¢ can be expressed as

s SiNe, sik = Yir(zri), k € Ci}
®)

3Note that the available maximum upload bandwidth L, can be time-varying,
because it depends on the physical maximum upload bandwidth (L2™ ) as well
as the available data (i.e., chunks) (L{***) that can be transmitted. Hence, L,
can be determined by L, = min{LP"¥, Ld2t»} For example, in the initial
stage of file sharing, L, = L{*** because peer k may not have enough chunks
to transmit. However, L, increases as peer k receives more chunks. While we
assume that L, = L‘,Z,}"y in this paper, L;, = L{*** can be explicitly addressed
by selecting discount factors, which will be discussed in Section III-A.

7$Nci7',)

Si :{Si = (8“,...

4A continuous value of @, can be discretized by peer ¢ based on its quan-
tization policy, as the bandwidth of each peer can be decomposed into several
“units” of bandwidth by the client software, e.g., [21].

where sﬁk denotes the /th segment among n;; segments that
corresponds to the /th state description of peer 7. For simplicity,
we assume that each segment represents the uniformly divided
total bandwidth, i.e., ¢ik($ki) = Sik if (l — 1) . (Lk)/(ntk) <
Tpi < 1- (Lk)/(nik) forl <1< ng.

2) Action Space A;: An action of peer 1 is its resource allo-
cation to the peers in C;. Hence, the action space of peer 7 in C;
can be expressed as

A; =< a; = (ai1,...,aine, )|0 < aiy < Li,

1<k<Ne, Y ax<Liy (6

keC;

where a;; € A; denotes the allocated resources to peer k by
peer ¢ in C;. Hence, peer i’s action a;j to peer k becomes peer
k’s received resources from peer 7, i.e., a;; = x;x. To consider
a finite action space, we assume that the available resources
(i.e., upload bandwidth) of peers are decomposed into “units”
of bandwidth [21]. Thus, the actions represent the number of
allocated units of bandwidth to the associated peers in their
groups. We define the resource reciprocation as a pair (a;, s;) =
((@i1y .- aing. )y (Si1s- - -, SiNg. )) comprising the peer 4’s ac-
tion, a;,, and the corresponding modeled resource reciprocation
Sik, which is determine as s;; = ¥ (xy;) forall k € C;. An
illustrative resource reciprocation at ¢ is shown in Fig. 2.

Note that various scheduling schemes can be used in con-
junction with the resource allocation (i.e., actions) deployed
by peers in order to consider the different priorities of the dif-
ferent data segments (chunks). We assume that the chunks that
have higher quality impact on average multimedia quality have
higher priority and are transmitted first when each peer takes
its actions. However, other scheduling algorithms, such as the
rarest first [6], [7] method for general file sharing applications
or several scheduling methods proposed in e.g., [8] for multi-
media streaming applications, can also be adopted. It is impor-
tant to note that appropriate scheduling schemes need to be de-
ployed in conjunction with our proposed resource reciprocation
strategies, depending on the objectives of multimedia applica-
tions (e.g., maximizing achieved quality, minimizing the play-
back delay etc.). However, the selection of scheduling strategies
was already investigated in several existing papers and it is not
the focus of this paper, as existing scheduling solutions can be
easily incorporated into the proposed framework.

3) State Transition Probability Py, (s;, s}): A state transition
probability represents the probability that by taking an action,
a peer will transit into a new state. We assume that the state
transition probability depends on the current state and the action



PARK AND VAN DER SCHAAR: FRAMEWORK FOR FORESIGHTED RESOURCE RECIPROCATION IN P2P NETWORKS 105

taken by the peer, as peers decide their actions based on their
currently received resources (i.e., state). Hence, given a state
s; € S; at time ¢, an action a; € A; of peer 7 can lead to
another state s; € S; att’ (¢’ > t) with probability P, (s;, s}) =
Pr( s, as). Hence for a state s; = (8;1,- .-, SiNg ) of peer i
in Cz, the probablhty that an action a; leads to a state transition
from s; to s} can be expressed as

aZ 517

H Pay,(sit s} ()

where P, (si, si;) = Pr(s};|si,aq). In this paper, the state
transition probabilities of peers are identified based on the past
resource reciprocation history. The details of how to build the
state transition probability functions will be discussed in Sec-
tion V.

4) Reward R;: The utility of peer : downloading its desired
multimedia content from its peers at rate x; can be defined as

], if z; < R;*Y,
Ui(w:) = {pi - Q;(x;), otherwise,

where R;°? is the minimum resource that corresponds to the
minimum required utlhty and p; is a constant representmg the
preference of peer ¢ for the content. The minimum resources
(rates) are explicitly considered in the utility definition in (8) in
order to provide support the quality of service (QoS) required
by delay-sensitive and bandwidth-intensive multimedia appli-
cations [22]. The derived quality @Q;(z;) with downloading rate
x; can be represented by a widely used quality measure, peak
signal-to-noise ratio (PSNR), which is a non-decreasing func-
tion of x; for multimedia applications [22]. Thus, we consider
that the reward R;(s;) for a peer i in state s; is the total received
resources in C;. Since the state of a peer ¢ is defined as the quan-
tized received resources from the peers in C;, the reward in each
state can be represented by a random variable, i.e.,

®)

Ri(si) = Ri(si1, -, 8ine, ) = Y TilSik) C))

keC;

where r;(s;1) is a random variable that represents the received
resource in s;. Thus, the resulting utility of peer ¢ in state s; is

Ui(Xorec, mi(six))-

5) Reciprocation Policy m} : The solution to the MDP is rep-
resented by peer 7’s optimal policy 7}, which is a mapping from
the states to optimal actions. The optimal policy can be obtained
using well-known methods such as value iteration and policy it-
eration [18]. Hence, peer + can decide its actions based on the
optimal policy 77, i.e., 7/ (s;) = a; forall s; € S;.

Hence, the resource reciprocation games in the P2P net-
works that consist of N total peers can be described by a
tuple (Z,S, A, P, R), where 7 is the set of N peers, S is the
set of state profiles of all peers, i.e., S = S; x --- X Sy,
and A = Aj; X --- X Ay denotes the set of action profiles.
P:Sx AxS — [0,1] is a state transition probability function
that maps from the current state profile s € S, corresponding
joint action a € A and the next state profile s’ € S, into a real
number between 0 and 1, and R : S x A — RY is a reward
function that maps an action profile & € A and a state profile
s € § into the derived reward. Thus, in this paper, our focus is
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Fig. 4. Tllustration of resource reciprocation based on peers’ attitudes. (a) Re-
source reciprocation models (b) Examples of reciprocation matrices (four ac-
tions and four state descriptions).

on the resource reciprocation game in a group, as this resource
game can be extended to the resource reciprocation game in a
P2P network. The resource reciprocation game, which includes
the processes of determining an optimal policy and optimal
actions, played by peer 2 based on the MDP is shown in Fig. 3.

We will discuss how the optimal policies can be determined
based on different types of peers in the next section.

III. CATEGORIES OF PEERS IN P2P NETWORKS

The types of peers in the considered P2P networks can be
characterized based on different criteria. In this paper, we cate-
gorize the peers as

* myopic or foresighted: depending on their objective utili-

ties; and

* pessimistic, neutral, or optimistic: depending on their re-

source reciprocation attitudes.

These different types of peers affect how the resource recipro-
cation game is being played, thereby leading to various recipro-
cation policies 7. More specifically, the decisions of myopic or
foresighted peers directly influence their action selection. More-
over, various resource reciprocation attitudes lead to different
state transition probability functions, which eventually impacts
their actions and the resulting reciprocation policies.

A. Peer Types Depending on Their Adopted Utilities

In this paper, we consider two types of peers, myopic and
foresighted peers, based on the utilities which they adopt. My-
opic peers only focus on maximizing the immediate expected

reward. Hence, the objective of a myopic peer ¢ in state sgt) =
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(Sity-vySi Ne, ) at time ¢ is to maximize its immediate expected
reward, i.e.,
myo [ (1)) A () ((t+1) (t+1)
R, (51 )— Z P, (si )8, )R,L- (51 )

sittD) €S;
(10)
Hence, the peer s takes its action a; (i.e., upload bandwidth allo-

cation) such that the action maximizes the immediate expected
reward R;"°(s (t)) ie.,

al = = arg max Z Pa, (sgr Z(t+1)> R (8§t+1))
~ s es,

subject to Z air < L.
keC;

(11)

As shown in (10), the immediate expected reward does not con-
sider the future rewards.

Unlike the myopic peers, the foresighted peers take their ac-
tions considering the immediate expected reward as well as the
future rewards. Since future rewards are generally considered
to be worth less than the rewards received now [23], the fore-
sighted peers try to maximize a cumulative discounted expected
reward. The cumulative discounted expected reward for a fore-
sighted peer 4 in state sgt) = (Si1,-..,8iN.. ) at ime ¢t = &,
given a discount factor ; can be expressed as

Riere (81(,‘)) a i (f (to+1)) E[R ( (r))]_
+1

12)

f=t.

More precisely, the cumulative discounted expected reward
Rf"”"(s(tc)) in (12) can be rewritten as (13), shown at the

K2
bottom of the page. Hence, peer ¢ can determine a set of actions
that maximizes Rfore(s,gtc)) for every state in S;, which leads
to an optimal policy 7}. The optimal policy =} thus maps
each state s; € S; into a corresponding optimal action a7, i.e.,
wi(s;) = af forall s; € S;.

By comparing (10) and (13), we can observe that the myopic
decisions are a special case of the foresighted decisions when
~v; = 0. Note that the discount factor ~y; in the considered P2P
network can alternatively represent the belief of the peer ¢ about
the validity of the expected future rewards, since the state tran-
sition probability can be affected by system dynamics such as
other peers’ joining, switching, or leaving groups. Hence, for
example, if the P2P network is in a transient regime, a small dis-
count factor is desirable. However, a large discount factor can be
used if the P2P network is in stationary regime [24]. Thus, we
assume that the value of the discount factor can be determined
by the peers using information based on their past experiences,
reputation of their associated peers [25], etc.
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B. Peer Types Based on Their Attitudes

Peers in the considered P2P networks can also be character-
ized based on their attitudes towards the resource reciprocation,
which are pessimistic, neutral, or optimistic [19]. Let (a;x, Six)
be a resource reciprocation between peer i and peer k, i.e., a
pair of peer i’s action a;f, to peer k and the corresponding peer
k’s action xy; that is mapped into s;,. A peer @ is neutral if it
presumes that the resource reciprocation changes linearly> de-
pending on its actions a,.. A peer i is pessimistic if it presumes
that the resource reciprocation decreases fast for a};, < a;; and
increases slow for a,’i & = @ik. On the other hand, an optimistic
peer ¢ presumes that the resource reciprocation decreases slow
fora), < a; andincreases fastfora}, > a;. llustrative exam-
ples of resource reciprocation shapes that correspond to peers’
different attitudes are shown in Fig. 4. In this paper, we consider
these resource reciprocation profiles, which will be referred to
as reciprocation models. Note that these reciprocation models
can be extended by considering different degrees of pessimism
or optimism, which will be presented in Section V-B.

These types of peers discussed above obviously affect their
resource reciprocation strategies. In the following sections, we
discuss how the peers’ attitudes can impact the way in which
peers model the other peers’ resource reciprocation behavior,
and investigate several resulting properties that can be drawn
for the various peer types.

IV. ANALYSIS OF PEERS’ INTERACTIONS
BASED ON THEIR ATTITUDES

In this section, we investigate several properties of the in-
teractions among peers that can have different memory sizes
for maintaining their resource reciprocation history or different
number of state descriptions. Moreover, we also study how dif-
ferent types of peers such as myopic/foresighted and their re-
source reciprocation models can impact their resource recipro-
cation. We analyze several interactions among the peers under
particular conditions that allow us to capture how the peer’s
characteristics can influence their interactions.

A. Impact of History on Resource Reciprocation

In this section, we first investigate the impact of the memory
size for the history of resource reciprocation and the recipro-
cation models of peers. We assume that a peer ¢ has its own
units of memory m;(l), where [ > 1 denotes the index of each
unit of memory, and one unit of memory is required to store a
resource reciprocation, i.e., m;(l) = (agt_l'Irl , ff l+1)) We
consider the interactions between a myopic peer ¢ (i.e., it fo-
cuses on maximizing its immediate expected reward) that can
only recall and process m;(1) (i.e., it identifies state transition
probabilities based on its last resource reciprocation), and its

5Several levels of neutral attitudes can be represented by using different slopes
[e.g., o in (20)].

S pgn (5

te+1 t 1
( + )) R, ( + ))
S(tc+1)es t'=t.+1
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associated self-interested peers aiming at maximizing their util-
ities, in order to quantify how these constraints can affect the
peers’ decisions and the resulting utilities.

1) Resource Reciprocation of a Myopic and Pessimistic Peer
for Self-Interested Peers: We first consider the resource recip-
rocation strategy that a myopic and pessimistic peer ¢ who can
recall and process only 7n;(1) will adopt, while interacting with
its associated peers. We assume that the associated peers can
identify the myopic and pessimistic peer and its reciprocation
characteristics.

Proposition 1: When a myopic and pessimistic peer ¢ that
can recall and process only m; (1) interacts with self-interested
peers aiming at maximizing their utilities in C;, peer ¢ will re-
ceive for download its minimum required resource R;* from
each of its associated peers in C;.

Proof:  Let my(1) = (a;, $;) =
((@i1,---,aing, ), (Si15-- -, 8ine,))  be a  recent  re-
source reciprocation for peer i, where s;p = Vik(zgi). As

shown in Fig. 4, a pessimistic peer ¢ presumes that

{a;k < Q1 = S,Iik = Aﬁc(< Sik) (14)

! !/
Qi > Qi = Sjp, = Sik

where a), denotes the actions that peer 7 can take in the next
resource reciprocation. Given the conditions in (14), peer ¢ al-
locates its available resources to maximize its reward. If peer k&
reduces its current allocated resources ; to },;(< ;) in the
next resource reciprocation interaction, which leads to decrease
of peer i’s reward, peer ¢ can adjust its actions in response to the
change of peer k’s resource allocation. Peer 7 can compensate
the reward reduction only if there exists a peer k'(# k) € C;
with the resource reciprocation (a;x, ;) such that

agk/ > Q1 = S;k/ > Skt (15)
where sl,, = i (vi;). However, peer ¢ cannot find such a
peer k' which satisfies (15), since this contradicts (14). There-
fore, if peers in C; identify peer 7’s reciprocation characteristics,
they will select actions which provide the minimum required re-
sources, i.e., ax; = R;° for k € C;. ]

As a result of Proposition 1, the total received download rates
that peer 4 can achieve in C; is at most N¢, - R;°?. A similar
conclusion can be drawn from the interactions between a my-
opic and optimistic peer and its associated self-interested peers.

2) Resource Reciprocation of a Myopic and Optimistic Peer
for Self-Interested Peers: Let us now consider the resource re-
ciprocation strategy that a myopic and optimistic peer only with
a recent resource reciprocation will take.

Proposition 2: 'When a myopic and optimistic peer ¢ that
can recall and process only m;(1) interacts with self-interested
peers aiming at maximizing their utilities in C;, peer i will re-
ceive for download its minimum required resource R;°® from
each of its associated peers in C;.

Proof:  Let m;(1) = (ay, ;) =
(- @iNe, ), (Si15-- -, SiNe, )) be a recent re-
source reciprocation for peer i, where ) kec, Gik < L;.
The current reward is ), 7(sir). As shown in Fig. 4, an
optimistic peer + presumes that

{agk < @ik = Shy, = Sik (16)

aly > aip = sh, = A (> sir)

forpeer k, k € C;. Based onm;(1) = (a;, s;) and the condition
in (16), peer 7 can take its next action a* such that it maximizes
the immediate expected reward, i.e.,

al* = arg max Z r(sl;) subject to Z al, < L; (17)
a €A yec, kEC;

where s} = (s}, ..., 5}y, ) is the resulting state for action a}*.
Based on the condition in (16), it can be easily shown that a
solution to the optimization problem in (17) is given by

arp. = RS and af, = a, + ny for all k € C;\{k*} (18)

where 7, is a positive constant satisfying ), - (ke Tk =
L; — R, and a peer k* € C; is selected by

k* = arg min {Agc — sik} .
keC;

19)

Equation (18) and (19) imply that peer ¢ selects peer k£* that cur-
rently provides it with the most resources. Then, the peer ¢ al-
locates the minimum required resource R, to peer k*. Hence,
the associated peers in C; prefer not to be selected by peer 4,
which will lead to the associated peers selecting their actions
ar; = R forall k € C;. ]

From the above proposition, we can conclude that the total
received download rates that peer ¢ can achieve in C; are at most
Ne, - R,

Based on the above two propositions (i.e., Proposition 1 and
Proposition 2), it can be observed that myopic and pessimistic/
optimistic peers, which base their resource reciprocation only
on the observed recent reciprocation, will receive only the min-
imum resource reciprocation from their associated self-inter-
ested peers, since there are no utility benefits for these peers
to adopt other reciprocation policies. These results can be ex-
plained based on the peer’s pessimistic or optimistic attitudes
for the resource reciprocation. Since these attitudes provide the
peer an overly simplified perspective on resource reciprocation
(i.e., minimum/unchanged or unchanged/maximum reciproca-
tion, respectively), the peer cannot effectively adopt its policies,
which leads to inefficient response to the resource reciprocation
of self-interested peers.

3) Resource Reciprocation of a Myopic and Neutral Peer for
Self-Interested Peers: We now consider the resource reciproca-
tion among a myopic and neutral peer and its associated self-in-
terested peers. In this analysis, we show that the best strategy
that a myopic and neutral peer 7 that can recall and process
only m;(1) can adopt is the tit-for-tat (TFT) strategy. The TFT
strategy is currently deployed in BitTorrent system as a peer
selection strategy [6], [7]. Specifically, a peer with the TFT
strategy in BitTorrent systems selects a fixed number of peers
that provides the highest upload rates (i.e., the most coopera-
tive), and equally divides and allocates its resources to the se-
lected peers.

Proposition 3: When a myopic and neutral peer ¢ that can re-
call and process only m;(1) interacts with self-interested peers
aiming at maximizing their utilities in C}, the strategy that the
peer ¢ adopts is the TFT strategy.
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TABLE 11
COMPARISON OF RESOURCE RECIPROCATION STRATEGIES
Peer Type [ No. of Reciprocation Models [ m;(1) | Rewards
Foresighted >1 1>1 (a)
>1 1>1 (b)
Myopic 1 (neutral) l=1 | > Ng, R (c)
1 (pessimistic, optimistic) =1 Ng, - R“?
Proof:  Let m;(1) = (a;, 8i) =
((ai1s -, aing, ), (si1,-- -+ 8ing,))  be a  recent re-

source reciprocation for peer ¢, where rec; Gik < L;. Fig. 4
shows that a neutral peer ¢ given m;(1) = (a;,s;) presumes
that

W # ik = Sy, = Vin(Thi = g - aly) (20)
where a;, = $;x/a for k € C;. Therefore, to maximize peer
i’s rewards, it allocates the minimum required resources R to
peer k(# k*) € C; (i.e., aj, = R;°?) and the residual available
resources L; — Zkea\{k*} R to peer k* (i.e., ajp- = L; —
D okeC\ (k) R;’"), where the peer k* is selected by

k* = argmax{air = Sir/air }- 21

keC;
The peer selection rule in (21) is the TFT strategy, as peer %
selects the peer with the highest a. [ |

Hence, the TFT strategy deployed in BitTorrent system is a
simple extension (i.e., it allows a peer to select multiple peers
rather than one) of the strategy that a myopic and neutral peer
can take.

The conclusions from the propositions presented in this
section are summarized in Table II (Note that the comparison
of (a)—(c) in Table II will be discussed in Section VI-C). These
propositions show that a peer who myopically determines its
actions using a single reciprocation model and a single resource
reciprocation history (i.e., m;(1)) cannot adopt an efficient
reciprocation policy. Although the TFT strategy enables a
neutral peer to achieve higher download rates than a pessimistic
or optimistic peer, actions based on this strategy result in
lower expected rewards than myopic or foresighted actions
determined considering well-estimated associated peers’ be-
haviors, as presented in Section VI-C. The difference between
these approaches can be easily understood by considering that
methods such as TFT are based on feedback information rather
than predictive information based on peer’s models. This shows
the importance of accurately modeling the associated peers’
behavior. Hence, a peer should identify its associated peers’
behavior (i.e., the state transition probabilities) using multiple
reciprocation models and the history of several resource recip-
rocation. How to determine the state transition probabilities
based on multiple reciprocation models and resource recipro-
cation will be discussed in Section V.

In the subsequent section, we determine the impact that dif-
ferent numbers of deployed state descriptions have on the policy
selected by the peers, and hence, its rewards.

B. Impact of Number of State Descriptions on Rewards

As discussed previously, a peer’s received resources from the
associated peers are characterized by a state, and each state is
represented by a set of finite state descriptions. Since a provided
rate x; from peer & is mapped into s;r = . (zxi) by peer i
using finite state descriptions, there exists a quantization error
|sik — xki|. Hence, there is an error between the expected
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Fig. 5. Variances of the expected rewards given eight, four, and two state de-
scriptions.

rewards computed based on the state descriptions and the actual
rewards. We use the variance of the expected rewards to quan-
tify how accurately the computed expected rewards represent
the actual rewards. Moreover, we will show that the variance
of the expected rewards will decrease as finer state descriptions
(i.e., more state descriptions) are used, providing more accurate
modeling for the resource reciprocation of the associated peers.
Hence, this is consistent to minimizing the mean square error
(MMSE) between the actual rewards and the expected rewards
computed based on the state descriptions.

To compare the variances induced by different number
of state descriptions, we assume that an optimal policy =«
given an n;;, X ny state transition probability matrix P is
known to peer ¢. As will be shown, the expected rewards
J* = [J*(sk)s -, J*(s5i*)]T of peer i from peer k based on
the policy 7 can be obtained by (28). Since no prior information
about the action of peer k is available, we assume that 7;(s!,)
in (28) is a uniform random variable, i.e., the mean and the
variance of r;(s!,) for s, (e, (I —1)- f—’; < <1 f—’;)
are given by FE(r(sl)) = ((2l —1)Ly)/(2n;) and
V(r(sh)) = (1/(12)(Ly/nix)?.

The simulation results in Fig. 5 show several illustrative ex-
amples for the variances of the expected rewards given eight,
four, and two state descriptions. These results clearly show that
having a larger number of state descriptions can decrease the
variance of the expected rewards regardless of the value of dis-
count factors, thereby leading to a more accurate computation
of the expected rewards.

V. DETERMINING THE STATE TRANSITION PROBABILITIES

A. State Transition Probability Computation Based on
Empirical Frequency

A peer ¢ can identify its state transition probabilities based
on the frequency of the reciprocation. For this, we consider a
table T that stores the history of resource reciprocation for peer
k given actions of peer 7. An element Tik(sé}c, sii a;r,) of the
table T}* denotes the number of state transitions from s;;, = s}
to 5: E = sii, given an action a;;. Hence, the state transition
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probability P,,, (six = sii sh =

frequency can be expressed as

©2) based on the empirical

k(1 12
T; ( ik Sik> 'ik)
Nik k h ’
Zh* Tz ( Sik» zk7a2k)

Algorithm 1 shows the steps for determining the state transition
probabilities based on the empirical frequency.

A disadvantage of this algorithm is that it may require a con-
siderable amount of observations of the resource reciprocation
over time to accurately identify the state transition probabilities.
To reduce the number of required observations, we propose an
alternative algorithm that can efficiently identify the state tran-
sition probabilities by modeling the peers’ attitudes.

Paik(sik = Si}c SILk = Sii) = (22)

Algorithm 1: Determining State Transition Probability
based on Empirical Frequency

Set: initial state s; = (s;1, ..., Sin,, ). initialize T} with
Th(s', 52 a;,) = 1 forall s2(1 < Iy < njy), for all
a;i € A;, and for all k € C;.
1: Observe resource reciprocation given an action a;;
(11711,~- y TN, 1)
2: State Mappmg, (214, - s TNe, i) — st =
(8hqy.-. LNC ), where st = 1[1”(@1) for all €C;

3: Update T" for all k € C;; Tk( ERm sljc,alk) —
Tk( Siks li air) + 1if s; = slk and s}, = lek
4: Compute Py, (s;, ;) using and (7) and (22)

B. State Transition Probabilities Based on Reciprocation
Models

The resource reciprocation models of peers are discussed in
Section III. A set of the state transition probability functions
that correspond to the resource reciprocation models is called
reciprocation matrix. The set of m available reciprocation ma-
trices of peer i in s;;, for peer k is denoted by MF(s;;,) =
{ME (sir), ..., ME, (sir)}, where MP(six) is a matrix with
its element M} (sir)[aix, si] = Pa.,(sik,s%,) as shown in
Fig. 4. Hence, a reciprocation matrix M} (s;x) € MF(s;;) for
a pessimistic peer ¢ taking action a;x in s;; (given its resource
reciprocation (d;x, ;%)) shown in Fig. 4 can be expressed by
(23), shown at the bottom of the previous page, where Wp =
HI|AL < sy < six}| is the number of state descriptions be-
tween s;; and Aﬁc, and a;; denotes the available actions that

can be taken in the next state. Aﬁc represents the degree of pes-
simism for the resource reciprocation. Hence, silk < Afk < Sik.
Similarly, a reciprocation matrix of an optimistic peer
1 in s;; for peer k shown in Fig. 4 can be represented
by (24), shown at the bottom of the previous page, where
Wo = |{l|six < sa < AQ} is the number of state descrip-
tions between s;;, and A, A$ represents the degree of opti-
mism for the resource reciprocation. Hence, s;, < Agc < sfk k.
The reciprocation matrix for a neutral peer can also be ex-
pressed as follows. A neutral peer ¢ presumes that an action
a;r 7 a; will lead to linear changes in resource reciprocation
from the current resource reciprocation (&g, $;x ). Hence, the
reciprocation matrix of a neutral peer ¢ can be expressed as

L, if si) = Yi(zr = - ag
Mii (sl sia] = {0. othfskrwise ( )

(25)

where o = s;;/d;;, denotes the slope determined based on the
current resource reciprocation. In the following subsection, we
propose an algorithm that uses the discussed reciprocation ma-
trices to efficiently identify the state transition probability func-
tions.

C. Building State Transition Probability Functions Based on
Reciprocation Matrices

We assume that a peer ¢ has a predetermined initial action
al = (af},...,aly, ) thatis used for initializing the reciproca-
tion matrices, i.e., a peer 7 has a predetermined action aiIk € A;
for peer k and the resulting s;;. Based on the initial resource
reciprocation between peer i and peer k € C;, (al asy, Sik ), the
reciprocation matrices of peer ¢ can be initialized based on (23),
(24), and (25). Note that peer ¢ can have several reciprocation
matrices, since it can select several levels of pessimism (or op-
timism) for resource reciprocation based on Aﬁ, and Agc. The
next step is to determine and adjust the weights for each recip-
rocation matrices, such that the weighted sum of reciprocation
matrices represents a set of state transition probability functions.

Let Mf(st) = {Mikl(sik% .. 7MLkm(SZk)} be the set
of reciprocation matrices that are initialized by peer ¢ with
the initial resource reciprocation (al,,s;;). The weights
of peer ¢ for the reciprocation matrices are denoted by
w¥(sik) = (W (sir), ..., wk (sir)) for peer k € C;. We
also define HF(s;x) = (hY, (six),...,hE (si)) as the set of
number of hits, where the resource reciprocation between peer
1 and peer k are matched to non-zero elements in the reciproca-
tion matrices. Specifically, if a resource reciprocation (aix, s}y )
is matched up to a non-zero element in Mﬁ(s,;k)[aik, sh,.], then

. - _ AP . _
. 1, if i < Gik, shy, = Aj Or @i > Gk, Sy, = Sik
: ! . ~
M (si)[air, s3] = § 1/Wp, if ai, = ai, AL, < sty < six (23)
0, otherwise
. . O
. 1, if air < Qik, S, = Sik O Qik > Qik, Sy, = Agc
: / . ~
Mii(six)lair, s3] = § 1/Wo, if a = aik, six < sty < AG 24

0, otherwise
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Fig. 6. Block diagram for updating the weights of the reciprocation matrices.

the number of hits increases, i.e., hY(six) — h¥(si) + 1.
HE(s;1) is used to update the weights of reciprocation matrices
for peer £k, i.e.,

wh(sin) = bl (sin) /Y hiv(sie)- (26)

I'=1

HE(s;1,) can be initialized by HF(s;) = (1,...,1). Hence, the
initial weights are w¥(s;,) = (1/m,.. 1/m) and thus, the
initial state transition probability matrix for peer k is given by
S wh (s ) ME(si) = (1)/(m) Y, M¥(sis). This up-
date process is depicted in Fig. 6 and the detailed algorithm is
presented in Algorithm 2.

Algorithm 2: Algorithm for Updating Peer 2’s Weights of
Reciprocation Matrices for Peer k

Set: initial resource reciprocation (al,, six), and AL, A9 a
desired maximum reward deviation 6;.
1: Initialize M*(s;1,) = {ME (six), ..., MF,
(al, six) based on (23), (24), and (25)
2: Initialize HF(s;x) = (1,...,1), w¥(s;) =
(wfl(sik)v s 7wfm(sik)) =(1/m,...,1/m)
3: repeat
4. Take action a;; € A;, observe reciprocation z;, and
determine s}, = ik (z;)
5: if M¥(s!,) does not exist
6: Initialize M’“( L) = {ME(s,),.
(aix, S}y, ) based on (23), (24), and (25)
7: Tnitialize HF(s!,) = (1,...,1), wk(s},) =
(wh (5, s Wy (s04)) = (1/m,. ., 1m)

8: else
<1< mdo//update HF(s;1)

(Sik)} with

, ME (sl,)} with

9: for all [ such that 1
10:  if ME(six)[aik, s ] # 0 then
1 B (si) — by (si) + 1

12: Update w¥ using (26)

13: Sik — S,IL-k

14: until Dy, < 6; //Dj, is a distance metric.
See Proposition 4.

Finally, based on the identified weights, P,,, (s, s};) can be
obtained by

Pz;‘ (Szk7 zk {Zw szk Szk)}[aikws;k] (27)

In the next section, we investigate how the error in estimating
the state transition probabilities can affect the peers’ decisions
and the resulting utilities.

D. Impact of Estimation Error in State Transition Probability
Matrices on Rewards

We study the impact of the state transition probability estima-
tion error on the cumulative discounted expected rewards. As an
illustration, we consider a case where peer ¢ and peer k are in a
group and reciprocate their resources.

Suppose that P is an n;; X ng state transition probability
matrix of peer i for peer k given peer i’s optimal actions aj,
which are determined by the optimal policy 7}, i.e., a};, =

(s = szk) for s; € S;. Each element [P];,;, = P[h lz] =
P (s L 5" ) denotes the transition probability from s} to s
g1ven the optimal action a,, and its /th row vector is denoted
by p;. We assume that P is an irreducible matrix since different
actions of a peer can induce different actions from its associ-
ated peers [26]. Therefore, there exists a steady state distribu-
tion v, i.e., limy,_,oo[P]" = 1v, where 1 = (1,...,1)T. We
use the L-norm (L > 1) to represent the distance between two
vectors p; = (pi1,---,pm) and qi = (qi1, - .., qn), denoted
by ||p: — ai||z- The L-norm of a vector x € R™ is defined by

x|z = (k= lonlF)YE.
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Proposition 4: For the true and estimated state transi-
tion probability matrices P and P’, let J* and J'* be the
cumulative discounted expected rewards of a peer ¢ from
a peer k based on an optimal policy «F and =}*, respec-
tively. Then, given a discount factor ~, the discrepancy

between J* and J’* from initial state s!, is bounded by

Dy, £ l(pe = ) + ()/(1 =) =)Ll
Proof: The discounted expected rewards J* =
[J*(sh), .., J*(s%)]F of a peer i from a peer k based
on an optimal policy 7} for P can be computed by
J* (sllk) T (s}k) J* (sllk)
: =P : +P : (28)
I* (si") 7 (sik") J* (s3%")
A compact expression for (28) is given by
J* = Pr+~yPJ*, (29)
and the solution to (29) is expressed as
J*=[I—4P] 'Pr=[P+~P>*+ P>+ .- Jr.  (30)

Without loss of generality, we consider a cumulative discounted
expected reward from s!, , i.e., J*(s!,). Using the expression in
(30), J*(sl,.) can be expressed as

I*(six) = (Pl - [Pl )r +y([PIs - [Pl )r

V(PTs - [Pl e+ GD
Since limy,_,oo[P]"* = 1v, (31) can be approximated by
J*(st ) ~pir +ywr+~%vr + - =pir + 11 vr. (32)

Similarly, J'*(s!
wi* for P’ as

&) can be computed based on an optimal policy

J*(sh) = pir+wr+42r+-- = pjr+ n j Fyl/'r. (33)

Using the approximations as in (32) and (33), the discrepancy
between the two cumulative discounted expected rewards are
expressed as

|97 (sia) = J’*( )I

i 2]
’Y

< - +

where 1/L + 1/’ 1. Since ||r||z; is a non-nega-
tive constant, the discrepancy between the two cumula-
tive discounted expected rewards from s,lik is bounded by
Dy = l(pe = p") + (0)/(1 = v = V)lLllr)lz =

Note that since ||[(p1—p';)+ (V)/(1—7)(v—-V)|r <
e = Pl + (1)/(1 = Yl = ¥)lz. the error of cu-
mulative discounted expected rewards is bounded by both the
distances of state transition probabilities and the stationary
distributions. Hence, we can conclude that the discrepancy
between the cumulative discounted expected rewards can be
affected by the estimation error in state transition probability
matrix and the stationary distribution, as well as each peer’s
discount factor. Since lim,_,1(v)/(1 — ) = oo, Dy, is
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Fig. 7. Average discrepancy between true and approximated cumulative dis-
counted expected rewards: 2-norm (L = 2) is used.

dominated by the stationary distribution error. As v — 0,
however, it is dominated by the error in state transition prob-
abilities. Hence, a peer can adjust the impact of the estimated
state transition probability error on the cumulative discounted
expected reward by changing v. We remark that the approx-
imation of J *( x) given by (32) is very accurate as shown
in Fig. 7. Fig. 7 depicts the average discrepancy between
J*(s!,) and its approximation for different number of states,
ie.  |(pir+wr+2ur + ) — (pir + (7)/(1 = 7)vr)].
These illustrative examples show that the discrepancy increases
as v approaches 0.5, while the discrepancy decreases as +y
approaches 0 or 1. These observations are reasonable since
the approximation becomes more accurate as either p;r or vr
dominates.

VI. SIMULATION RESULTS

A. Comparison of Various Approaches for Identifying the
State Transition Probabilities

We discuss two algorithms, one is based on the empirical
frequency and the other one is based on the reciprocation
models, to identify the state transition probability matrices in
Section V. As discussed in Proposition 4, D, is proposed to
quantify the maximum discrepancy between the discounted
expected rewards from a state, which is induced by the true
and estimated state transition probability error. To illustrate
these tradeoffs between the efficiency and the accuracy of
the two proposed approaches, we deploy them to identify the
true state transition probability. For the reciprocation model
based approach, three reciprocation models that represent the
pessimistic, optimistic, and neutral behaviors are used. In D j,,
we assume that ||r||z- is normalized to 1, and the 2-norm (i.e.,
L = L’ = 2) is used. The results are shown in Fig. 8.

Since the observations are generated based on a stationary
state transition probability matrix, if there are enough observa-
tions of resource reciprocation and the empirical frequency is
deployed to identify the state transition probability functions,
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the state transition probability functions can be well-identified,
i.e., the more observations, the higher accuracy. However, it
may require many peers’ interactions to obtain accurate state
transition probability functions. In contrast, the reciprocation
model based approach can efficiently identify the state transition
probability functions with fewer observations than the empirical
frequency based approach. However, unlike the empirical fre-
quency based approach, the improvement gained for more ob-
servations diminishes rapidly (before reaching the best perfor-
mance of the empirical frequency based approach), as the es-
timation relies on predetermined reciprocation models. There-
fore, it is important to decide an appropriate approach consid-
ering these tradeoffs. The detailed weight update processes for
the reciprocation model based approach are shown in Fig. 9.

In order to show the weight update process, predetermined
true state transition probability functions for the resource recip-
rocation models (i.e., neutral, pessimistic, optimistic, and gen-
eral) are used in these simulations. As shown in Fig. 9, the
proposed algorithm based on the reciprocation models effec-
tively computes the weights with fewer observations, thereby
providing a faster convergence. This convergence property be-
comes important when the state transition probabilities vary
over time. Illustrative simulation results are shown in Fig. 10.

Fig. 10 shows the D, obtained by two approaches. To study
the effectiveness of the proposed algorithm in a dynamic envi-
ronment, different state transition probability matrices of a peer
are deployed every 10- or 20-resource reciprocation. As dis-
cussed, the proposed reciprocation model based approach pro-
vides a faster convergence, thereby enabling peers to efficiently
capture the changes of the state transition probability. There-
fore, the proposed approach can cope with a dynamic environ-
ment, thereby making it more suitable than the empirical fre-
quency based approach for a peer.

B. Quantifying the Impact of the Number of Reciprocation
Models

As discussed in Section V, various reciprocation models can
be deployed, which enable peers to identify the state transition
probabilities more accurately. To study the impact of the number
of reciprocation models on the accuracy of the state transition
probabilities, we assume that a true state transition probability
of a peer is stationary and randomly generated. The achieved
D, when different number of reciprocation models are used
are shown in Fig. 11(a).

In these simulation results, the number of reciprocation
models is increased by symmetrically extending the pessimistic
and optimistic reciprocation models. For the case where two
reciprocation models are used, only the neutral and pessimistic
resource models are used as an illustration. As expected, in
general, the more resource reciprocation models are deployed,
the higher accuracy for identifying the state transition proba-
bility matrices can be achieved. However, we can observe that
the D, improvement decreases as the number of deployed re-
ciprocation models increases. Since the D j, decreases as more
reciprocation models are deployed, the reward discrepancy due
to the estimation error is reduced as shown in the Proposition 4.
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Fig.8. (Averaged) D, for estimated state transition probability matrices with/
without reciprocation models.

Moreover, if the information about the relationship between
the number of deployed reciprocation models and the resulting
D, is available for peers, they can select the number of recipro-
cation models and can expect the number of required observa-
tions for the resource reciprocation. As discussed in Proposition
4, the reward deviation is bounded by the D ;,, which can also
be bounded by a peer’s desired maximum reward deviation 9,
ie.,

w—=v)| el <6-[rllz-

L

— (34)

H<pl P+

For instance, in Fig. 11(a), if a desired maximum reward devia-
tion is 0.15, i.e., § = 0.15, a peer can select 3, 5, 7, or 9 number
of reciprocation models, expecting 14, 7, 4, or 2 observations
of resource reciprocation, respectively, to achieve §, as shown
in Table III. Hence, peers can select the appropriate number of
reciprocation models, by explicitly considering their tolerable
durations for resource reciprocation and their desired maximum
reward deviation.

If a priori information about the associated peers’ resource
reciprocation behavior is available (e.g., using reputation [25]),
deploying the minimum number of reciprocation models that
closely approximate their behaviors will result in the best per-
formance to identify the state transition probabilities. As an il-
lustration, we consider four cases where a different number of
reciprocation models are used: i) two models for the pessimistic
and optimistic reciprocation; and these models are extended to
ii) four, iii) six, and iv) eight reciprocation models by consid-
ering different degrees of pessimism/optimism. We assume that
the true state transition probability of an associated peer is well
matched by a set of reciprocation models included in the cases
of ii), i.e., a linear combination of the deployed reciprocation
models in ii) can lead to the true state transition probability.
Note that the cases of iii) and iv) can also include a set of re-
ciprocation models that approximates the associated peer’s re-
source reciprocation as they are extended from the case of ii).
The simulation results are shown in Fig. 11(b).
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Fig. 10. D, for time varying true state the transition probability.

Since the true state transition probability function is well
identified by case ii), the lowest D j, can be achieved with four
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Different types of true state transition probability functions and the weights for resource reciprocation models.

reciprocation models. However, D ; becomes the largest for
the case of i), as the reciprocation models cannot efficiently
estimate the true state transition probability function. Interest-
ingly, we can observe that D ;, with more reciprocation models
such as cases iii) and iv) are larger than case ii), although
case iii) and iv) also include the reciprocation models that are
included in case ii). This is because the extended reciprocation
models from case ii) become redundant, and do not improve
the accuracy. Rather, it prevents the peer from identifying the
state transition probability functions accurately. Hence, we can
conclude that if a priori information about the associated peers’
resource reciprocation behaviors is available, the minimum
number of reciprocation models that can capture the peers
resource reciprocation behaviors provides the best result for
identifying the state transition probability functions.

C. Impact of Myopic and Foresighted Policies on Utilities

In this section, we quantitatively compare the impact of the
myopic and foresighted policies on the achieved cumulative
utilities. In these simulations, the reciprocation model based
approach is used to identify the state transition probability
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TABLE III
NUMBER OF RECIPROCATION MODELS AND REQUIRED
RESOURCE RECIPROCATION FOR § = (.15

No. of Reciprocation Models | No. of Required Resource Reciprocation
N/A
14 (100%)
7 (50%)
4 (28.6%)
2 (14.3%)

NeREN LV, UV )

functions. The myopic policies are made based on (11) and the
foresighted policies are made based on maximizing R°™ in
(12) with the discounted factor v = 0.8 as an illustration. The
solution to the MDP is implemented based on a well-known
policy iteration method [18], which performs policy improve-
ment and policy evaluation iteratively. In addition, as an
illustration, we compare the TFT strategy implemented in
BitTorrent-like system supporting two leechers simultaneously.
The simulation results are shown in Fig. 12.

Fig. 12 shows the immediate expected rewards and cumu-
lative discounted expected rewards of a peer ¢ obtained based
on the actions determined by the myopic (including TFT) and
foresighted policies. A state s; = (s;1, 8;2, 8i3) of peer i is
represented by four state descriptions of three associated peers,
ie., si € {8l 8%, 5%, sh}, where E(r(s%h)) < E(r(s®))
if m < n, for k = 1,2,3. The state indexes indicate the ini-
tial state of peer ¢, where it determines its optimal policy (and
the corresponding actions). The size of the state space is 64 in
this case. Each state is enumerated, and then, represented by
state index from 1 to 64. The y-axis represents the normalized
(immediate or cumulative discounted expected) rewards. We as-
sume that each state description is represented by a number, i.e.,
st, =lforl =1,...,4,and the expected reward in each state is
proportional to the numbers that corresponds to the states, i.e.,
E(r(st,)) = Wy - 1 for a constant W, for peer k. Hence, the
expected rewards in a state s; = (s',5%3,5%) is represented
by E(r(s:)) = So_, E(r(s%)) = S35 _, Iy - Wi This can be
easily extended to represent actual rewards by assigning actual
received resources to each state.

We can observe that the obtained utilities based on the TFT
policy are worse than those based on the myopic or foresighted
policies, since the actions determined by the TFT policy do
not consider the expected utilities. Moreover, the constraints of
fixed concurrent allowable uploads to the leechers can prevent
the decision process from selecting better actions. The proposed
approaches can enhance the resource reciprocation decisions of
TFT strategy, which is currently implemented in current BitTor-
rent systems. By deploying the proposed approaches, peers can
efficiently model their associated peers’ behavior (in e.g., every
rechoke period [6], [7]), and thus, the peers can allocate their
resources to their associated peers based on their levels of coop-
eration. Hence, peers in the current BitTorrent systems can have
multiple actions, rather than two simple actions (i.e., allowing
or rejecting downloads), thereby efficiently adjusting their re-
source reciprocation and improving their performance.

As discussed previously, the myopic decisions are made
based on (11), which maximize the immediate expected re-
wards. Hence, we can verify that the immediate expected
rewards obtained by the actions of myopic policy are always
higher (or equal) than the other policies in Fig. 12(a). However,
as shown in Fig. 12(b), the foresighted decisions are made based
on (12), which maximize the cumulative expected discounted
rewards (i.e., R¥°™). Therefore, the foresighted policy enables
the peers to determine their decisions that lead to the highest
cumulative discounted expected rewards.

A higher cumulative discounted expected reward can lead
to a shorter downloading time or a higher multimedia quality.
Fig. 13 shows illustrative examples of downloading time and
achieved multimedia quality based on the proposed foresighted
policy and the TFT strategy. In Fig. 13(a) and (b), we assume
that a peer is downloading a general file with size of 5 Mbytes,
and Foreman sequence (CIF, 30 frames/s) from its associated
peers, respectively. We assume that the associated peers have
250Kbps maximum available upload bandwidth and have
enough chunks to transmit. Moreover, the associated peers
use five state descriptions. For Fig. 13(b), we assume that a
peer downloads the packets that have higher quality impact
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Fig. 12. Immediate and cumulative discounted expected rewards achieved by
different policies. (a) Immediate expected rewards. (b) Cumulative discounted
expected rewards.

first. Simulation results in Fig. 13 clearly show that a higher
cumulative discounted expected reward leads to a shorter down-
loading time for file sharing applications or a higher quality for
multimedia content sharing applications.

VII. CONCLUSION

In this paper, we consider the resource reciprocation among
heterogeneous and self-interested peers that negotiate the
amount of resources that they will provide to each other. The
resource reciprocation among the peers is modeled as a recip-
rocation game, and the game is played by foresighted peers
using an MDP framework. To successfully implement the MDP
framework in the dynamic P2P environment, we propose to
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Fig. 13. An illustrative examples for immediate and cumulative discounted
expected rewards achieved by different policies. (a) Downloading Time. (b)
Achieved Multimedia Quality.

model the resource reciprocation of peers. We study the trade-
offs between efficiency and accuracy when different numbers
of reciprocation models are deployed. We show that if a priori
information about the associated peers’ behaviors is available,
deploying the minimum number of reciprocation models that
closely approximate their behaviors results in the minimum
reward deviation. We also analytically show the impact of the
estimation error between the true and modeled state transition
probability function on each peer’s reciprocation policy and
its resulting rewards. Moreover, we analytically study how
bounded rationality can impact the interactions among the
peers and the resulting resource reciprocation. In the simula-
tions, we show that the proposed reciprocation based approach
is suitable for a dynamic environment. Finally, we show that
the proposed foresighted decisions lead to the best performance
in terms of the cumulative expected utilities as opposed to the
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currently deployed strategy (i.e., TFT) in BitTorrent system or
the myopic decisions.
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